

Absolute Configurations of Macrolide Antibiotics of the Bafilomycin and Leucanicidin Groups

MICHAEL G. O'SHEA, RODNEY W. RICKARDS*
and JENNIFER M. ROTHSCHILD

Research School of Chemistry,
Australian National University,
Canberra, A.C.T. 0200, Australia

ERNEST LACEY

Microbial Screening Technologies Pty Ltd.,
"Yarrandoo" Research Station,
Western Road, Kemps Creek, N.S.W., 2171

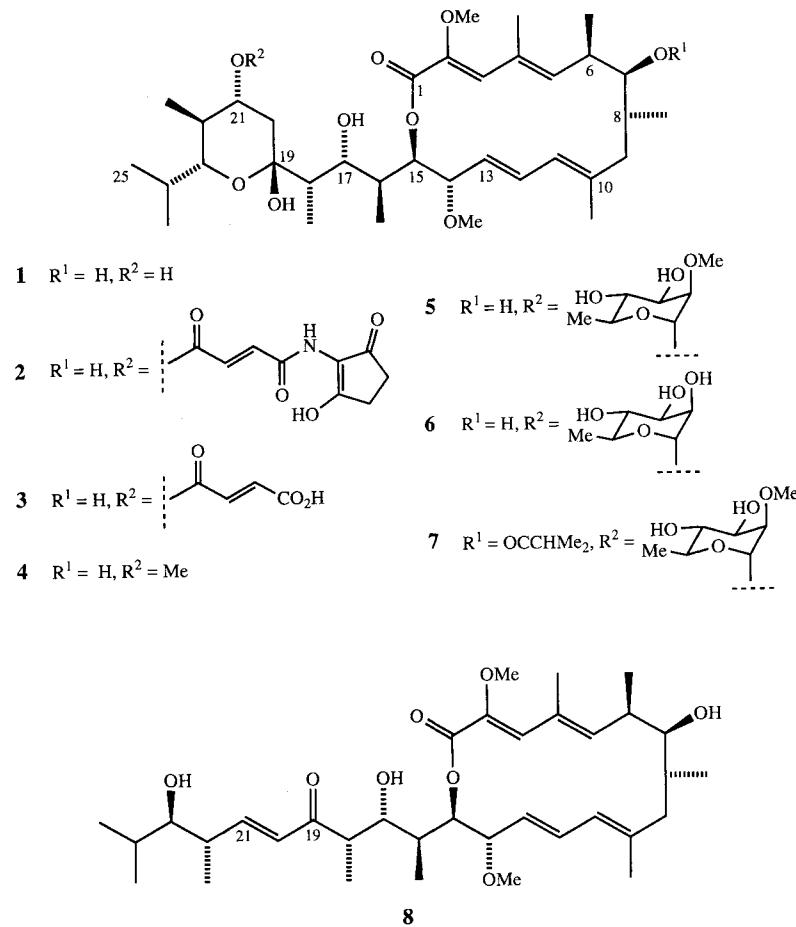
(Received for publication August 18, 1997)

Antibiotics of the bafilomycin¹⁾ and leucanicidin groups²⁾ isolated from various microorganisms of the order *Actinomycetales* have been known for some years to possess a broad spectrum of biological activity against bacteria, fungi, yeasts, insects, protozoa, cestodes, and free-living nematodes. More recently they have been shown to have potent nematocidal activity against the free-living stages of intestinal parasitic nematodes of major importance in the animal health industry.³⁾ Furthermore the bafilomycins have been suggested as possible therapeutic agents in the treatment of peptic ulceration, by virtue of their inhibition of cell vacuolisation induced by the bacterium *Helicobacter pylori*^{4~6)}.

The molecular structures of both the bafilomycins and the leucanicidins are characterised by the presence of a similar 16-membered macrolide nucleus to which various side chains are attached at the lactone terminus C15 (Fig. 1), leading to the generic term bafilolides for these antibiotics³⁾. The only bafilolide for which the complete stereochemistry has been rigorously secured is bafilomycin A₁. X-ray crystallography of its 21-(2',2',2'-trichloroethylcarbonate) derivative established the absolute configuration depicted in structure **1**⁷⁾, confirming that predicted from ¹H NMR data and computer modeling in comparison with the known related antibiotic elaiophylin⁸⁾. Both crystalline and solution conformations of bafilomycin A₁ are stabilised by a hydrogen-bonding network involving C19-OH, C17-OH and C1=O, which fixes the configuration of the potentially epimerisable C19-hemiacetal hydroxyl group^{7,9~11)}.

Other bafilomycins and the leucanicidins (Fig. 1) have been assumed to correspond in absolute configuration at their respective stereogenic centres to bafilomycin A₁ (**1**)^{3,12)}. Evidence for such correspondence, however, is

incomplete for both the bafilomycins and the leucanicidins. In view of the increasing biological significance of these antibiotics and the consequent need for accurate stereochemical information, we present here evidence which firmly establishes the correspondence of the absolute configurations of bafilomycins A₁, B₁, C₁ and D, and of leucanicidin. We also consider the stereochemical status of the related antibiotics bafilomycin A₁ 21-*O*-(α -L-rhamnopyranoside), 7-*O*-isobutyrylleucanicidin, and L-681,110B₁.


Results and Discussion

Absolute Configurations of Leucanicidin,
7-*O*-Isobutyrylleucanicidin and Bafilomycin A₁
21-*O*-(α -L-rhamnopyranoside)

The two-dimensional structure of the aglycone of leucanicidin (**5**) was defined primarily by NMR spectroscopy¹³⁾, and was confirmed¹⁴⁾ by comparison of its spectra and degradation products with those of bafilomycin A₁ (**1**)^{12,15)}, which lacks the 21-(2'-*O*-methyl-L-rhamnoside) sugar moiety of leucanicidin. Since the C13~C25 segments of the two antibiotics afforded acyclic degradation products identical in all respects including optical rotation¹⁴⁾, these segments also correspond in absolute configuration, with the possible exception of the cyclic hemiacetal centre C19 which is potentially epimerisable and is destroyed in these reactions. ¹H NMR spectra of the intact antibiotics^{10,13)}, however, show similar W-coupling between C19-OH and H20 α , indicating that the configurational correspondence includes also C19. The remaining common stereogenic centres C6, C7 and C8 of the two antibiotics were shown to correspond at least in relative configuration, but no absolute conclusion could be reached¹⁴⁾. Cleavage of the C5~C10 segment of each antibiotic afforded inseparable mixtures of two stereoisomers of 2,4-dimethylheptane-1,3,6-triol, but in different ratios thus precluding meaningful comparison of optical rotation values.

After considerable experimentation with the acid- and base-sensitive leucanicidin, we have shown that hydrolysis of the carbohydrate moiety by mild treatment with *p*-toluenesulfonic acid in aqueous acetonitrile, conditions which have been employed for the preparation of the aglycones of the macrolide antibiotics concanamycin A and elaiophylin¹⁶⁾, affords bafilomycin A₁ (**1**). In conjunction with the known absolute configuration and anomeric stereochemistry of the attached rhamnoside¹³⁾, this conversion confirms the previous structural and

Fig. 1. Structures of baflomycins A₁ (1), B₁ (2), C₁ (3), D (8), baflomycin A₁ 21-*O*-(α -L-rhamnopyranoside) (6), leucanicidin (5), 7-*O*-isobutyrylleucanicidin (7), and antibiotic L-681,110B₁ (4).

stereochemical conclusions^{13,14)} and establishes the complete absolute configuration of leucanicidin as that depicted in structure 5.

The ¹H NMR chemical shift and coupling constant data provided for 7-*O*-isobutyrylleucanicidin, a minor co-metabolite of leucanicidin in *Streptomyces halstedii*¹⁷⁾, are in complete accord (except for expected chemical shift differences in the vicinity of the additional ester substituent) with those of leucanicidin itself¹³⁾, and thus imply the corresponding absolute configuration 7.

Streptomyces olivaceus produces leucanicidin (5) together with a related antibiotic, which was assigned the two-dimensional structure 6 and named baflomycin A₁ 21-*O*-(α -L-rhamnopyranoside) on substantial but incomplete evidence similar to that described above for leucanicidin¹⁴⁾. With the subsequent establishment of the stereochemistry of baflomycin A₁ itself as 1⁷⁾, this rhamnoside if correctly assigned would have the stereochemistry 6, and from the present work leucanicidin (5) would be its 2'-*O*-methyl ether. Detailed consideration

of the reported ¹H and ¹³C NMR data^{13,14)} for the rhamnoside and leucanicidin confirms their relative stereochemical correspondence, and in conjunction with their similar optical rotations confirms the absolute configuration 6 for this rhamnopyranoside. We attribute minor disagreements in the NMR data to recording errors, apart from the obligatory differences in the sugar resonances.

Absolute Configurations of Baflomycins B₁, C₁, D and Antibiotic L-681,110B₁

Baflomycins B₁ (synonym setamycin), C₁ (synonym antibiotic L-681,110A₁) and D (synonym tubaymycin) have been shown to have the two-dimensional structures 2, 3, and 8, respectively¹⁾. No chemical interconversion has been reported between baflomycin A₁ (1), which has established stereochemistry, and these related baflomycins, although baflomycins B₁ and C₁ have been stated¹²⁾ without further detail to be "C21 substituted derivatives of baflomycin A₁". The published NMR data

do not allow comparison of stereochemistry, since the necessary complete detail is lacking for baflomycins B₁ and D while different solvents were used for the reported ¹H spectra of baflomycins A and C₁. The co-production of various baflomycins by the same microorganism (e.g., A₁, B₁, C₁ and D by *Actinomyces* sp. A239³), and A₁, B₁ and C₁ by *Streptomyces griseus* subspecies *sulfurus*¹¹) suggests configurational correspondence, but does not necessarily ensure that it is complete. The formation of epimeric alcohols, for example, by a single organism is not uncommon (e.g., the lactones brefeldin A and 7-*epi*-brefeldin A by *Curvularia lunata*¹⁸). KRETSCHMER and coworkers, however, have converted baflomycins B₁ and C₁ into baflomycin D by warming at pH 13.5 in dioxane-water, which effects ring opening of the hemiacetal to the δ -hydroxyketone followed by β -elimination of the fumarate ester to yield the δ -hydroxy- α,β -unsaturated ketone¹⁹. These three baflomycins must therefore correspond in configuration at all stereogenic centres, with the possible exceptions of the C19 hemiacetal centre and the C21 ester-carrying centre in B₁ and C₁, both of which are destroyed in these conversions into D.

Treatment of leucanicidin (5) at room temperature with aqueous methanolic sodium hydroxide afforded an anhydroaglycone, identical in all respects including optical rotation to baflomycin D. These conditions have previously been employed to form anhydroaglycones from the related 18-membered macrolide antibiotics concanamycin A²⁰, B and C²¹, and again involve ring opening of the hemiacetals to δ -hydroxyketones followed now by β -elimination of the sugar moieties. Since we have established the total absolute configuration of leucanicidin as 5, then the present conversion establishes that of baflomycin D as depicted in structure 8. Taken in conjunction with the work of KRETSCHMER and coworkers¹⁹ (see above), it also establishes that baflomycins B₁ and C₁ have the configurations 2 and 3, except for the C19 and C21 centres already noted. The large 10~12 Hz coupling constants between the adjacent protons H20 α , H21, H22 and H23 of baflomycin C₁²², however, define their *trans*-diaxial vicinal relationships in the chair-shaped tetrahydropyran ring; hence the C21 configuration of this antibiotic relative to the known centres C22 and C23 is as shown in structure 3. Although the corresponding proton spin system in baflomycin B₁ is partially obscured by other resonances, the critical signal of H21 appears as a doublet of triplets with *J* 5.0 and 11.0 Hz at δ 5.09 (CDCl₃), establishing the C21 configuration relative to C22 as shown in structure 2.

Whilst the C19 centres in baflomycins B₁ and C₁ are potentially epimerisable, ¹H and ¹³C NMR spectra^{3,22} indicate that both antibiotics exist as single epimers in organic solvents. These epimers are probably those depicted in structures 2 and 3, stabilised by hydrogen-bonding networks between C19-OH, C17-OH and C1=O similar to that established for baflomycin A₁^{7,9~11}.

Antibiotic L-681,110B₁, a minor component of the sodium and potassium ion activated adenosinetriphosphatase inhibitor L-681,110, has been shown to have the two-dimensional structure 4 together with relative stereochemistry around the tetrahydropyran ring as depicted²², and has been considered¹ to be 21-(*O*-methyl)-baflomycin A₁. Comparison of its ¹H NMR chemical shift and coupling constant data²² with that recorded for baflomycin A₁ in the same solvent^{10,15} shows excellent correspondence, except as expected for the chemical shifts of H20, H21 and H22 which are near the additional methyl ether group, and also for the assignments of C8-CH₃ and C24-CH₃ which should probably be reversed. Accordingly L-681,110B₁ is appropriately represented by the absolute configuration 4.

Conclusion

The macrolide antibiotic leucanicidin has been converted into the related macrolides baflomycin A₁ (1) and baflomycin D. In conjunction with the established absolute configuration of baflomycin A₁, and the previous conversions of baflomycins B₁ and C₁ into baflomycin D, this establishes the complete absolute configurations of baflomycin B₁ (2), C₁ (3), D (8), and leucanicidin (5) as depicted (Fig. 1). Detailed consideration of the available spectroscopic data for the related baflomycin A₁ 21-*O*-(α -L-rhamnopyranoside) (6), 7-*O*-isobutyryl leucanicidin (7) and antibiotic L-681,110B₁ (4) also settles their absolute configurations as shown. The stereochemistry of the carbon skeleton of these baflolide antibiotics is specified by the descriptors 2*Z*, 4*E*, 10*E*, 12*E* and 6*R*, 7*S*, 8*R*, 14*S*, 15*R*, 16*S*, 17*R*, 18*S*, 19*R*, 21*R*, 23*R*, except for baflomycin D which lacks tetrahedral centres at C19 and C21 but has a 20*E* olefinic bond. The chirality at C22 remains unchanged in all these metabolites, but its descriptor varies with the functionalisation of the C21-OH group.

Experimental

General

NMR spectra were recorded for acid-free CDCl_3 solutions on Varian Gemini-300 or VXR-500 instruments, with the solvent as internal reference. FAB-MS data were obtained on a VG ZAB2-SEQ spectrometer using 3-nitrobenzyl alcohol as the matrix. Leucanicidin was obtained as described previously³⁾.

Conversion of Leucanicidin (5) into Bafilomycin A₁ (1)

Leucanicidin (5) (18 mg) was treated with *p*-toluenesulfonic acid (22 mg) in $\text{MeCN-H}_2\text{O}$ (4:1, 4 ml) at 25°C for 24 hours. The solution was cooled to 0°C, neutralised with saturated aqueous sodium bicarbonate, and extracted with EtOAc. Chromatography of the dried (MgSO_4), evaporated extracts on silica gel ($\text{CH}_2\text{Cl}_2-\text{Me}_2\text{CO}$, 4:1) afforded bafilomycin A₁ (1) (1 mg, 5%), identified by comparison of ¹H and ¹³C NMR spectra with literature data¹⁰⁾; FAB-MS m/z 645 ($\text{M}+\text{Na}$)⁺.

Conversion of Leucanicidin (5) into Bafilomycin D (8)

Leucanicidin (5) (10 mg) was treated with 0.03 N aqueous sodium hydroxide in MeOH (1:1, 1 ml) at room temperature, and the reaction monitored by TLC. After 1 hour the starting material had been consumed, and the mixture was neutralised with dil. hydrochloric acid and extracted with EtOAc. The extracts were dried (MgSO_4), concentrated, and subjected to flash chromatography on silica gel ($\text{CH}_2\text{Cl}_2-\text{Me}_2\text{CO}$, 9:1) to yield bafilomycin D (8) (2.2 mg, 28%), identified by comparison of ¹H and ¹³C NMR spectra with literature data¹⁹⁾; $[\alpha]_D^{22} - 246^\circ$ (*c* 0.6, CHCl_3) {lit.¹⁹⁾ $[\alpha]_D^{25} - 251^\circ$ (*c* 0.6, CHCl_3)}.

Acknowledgments

The authors gratefully acknowledge the support of Dr. J.-C. GEHRET (Ciba-Geigy Ltd., Basel) and Dr. T. FRIEDEL (Ciba-Geigy Australia Ltd.) in providing a postdoctoral fellowship and research funding for Dr. O'SHEA.

References

- Dictionary of Natural Products. Vol. 1. *Exec. Ed.*, J. BUCKINGHAM, pp. 598~599, Chapman and Hall, London, 1994, and references therein
- Dictionary of Natural Products. Vol. 3. *Exec. Ed.*, J. BUCKINGHAM, p. 3627, Chapman and Hall, London, 1994, and references therein
- LACEY, E.; J. H. GILL, M. L. POWER, R. W. RICKARDS, M. G. O'SHEA & J. M. ROTHSCHILD: Bafilolides, potent inhibitors of the motility and development of the free-living stages of parasitic nematodes. *Int. J. Parasitol.* 25: 349~357, 1995
- PAPINI, E.; M. DE BERNARD, M. BUGNOLI, E. MILIA, R. RAPPOLI & C. MONTECUCCO: Cell vacuolization induced by *Helicobacter pylori*: Inhibition by bafilomycins A₁, B₁, C₁ and D. *FEMS Microbiol. Lett.* 113: 155~159, 1993
- COVER, T. L.; L. Y. REDDY & M. J. BLASER: Effects of ATPase inhibitors on the response of HeLa cells to *Helicobacter pylori* vacuolating toxin. *Infect. Immun.* 61: 1427~1431, 1993
- PAPINI, E.; M. BUGNOLI, M. DE BERNARD, N. FIGURA, R. RAPPOLI & C. MONTECUCCO: Bafilomycin A₁ inhibits *Helicobacter pylori*-induced vacuolization of HeLa cells. *Mol. Microbiol.* 7: 323~327, 1993
- BAKER, G. H.; P. J. BROWN, R. J. J. DORGAN, J. R. EVERETT, S. V. LEY, A. M. Z. SLAWIN & D. J. WILLIAMS: A conformational study of bafilomycin A₁ by X-ray crystallography and NMR techniques. *Tetrahedron Lett.* 28: 5565~5568, 1987
- COREY, E. J. & J. W. PONDER: Stereochemistry of the hygrolidins. *Tetrahedron Lett.* 25: 4325~4328, 1984
- EVERETT, J. R.: Novel long-range ¹H and ¹³C N.M.R. isotope effects transmitted via hydrogen bonds in a macrolide antibiotic: Bafilomycin A₁. *J. Chem. Soc., Chem. Commun.* 1878~1880, 1987
- BAKER, G. H.; P. J. BROWN, R. J. J. DORGAN & J. R. EVERETT: The conformational analysis of bafilomycin A₁. *J. Chem. Soc., Perkin Trans. II* 1073~1079, 1989
- EVERETT, J. R.; G. H. BAKER & R. J. J. DORGAN: Novel long-range isotope effects in a macrolide antibiotic: bafilomycin A₁. *J. Chem. Soc., Perkin Trans. II* 717~724, 1990
- WERNER, G.; H. HAGENMAIER, K. ALBERT & H. KOHLSHORN: The structure of the bafilomycins, a new group of macrolide antibiotics. *Tetrahedron Lett.* 47: 5193~5196, 1983
- ISOGAI, A.; S. SAKUDA, S. MATSUMOTO, M. OGURA, K. FURIHATA, H. SETO & A. SUZUKI: The structure of leucanicidin, a novel insecticidal macrolide produced by *Streptomyces halstedii*. *Agric. Biol. Chem.* 48: 1379~1381, 1984
- MEYER, M.; W. KELLER-SCHIERLEIN, H. DRAUTZ, W. BLANK & H. ZAHNER: 10. Stoffwechselprodukte von Mikroorganismen. Bafilomycin-A₁-21-O-(α -L-rhamnopyranosid): Strukturaufklärung durch chemische Verknüpfung mit Bafilomycin A₁ und Leucanicidin. *Helv. Chim. Acta* 68: 83~94, 1985
- WERNER, G.; H. HAGENMAIER, H. DRAUTZ, A. BAUMGARTNER & H. ZAHNER: Metabolic products of microorganisms. 224. Bafilomycins, a new group of macrolide antibiotics. Production, isolation, chemical structure and biological activity. *J. Antibiotics* 37: 110~117, 1984
- BINDSEIL, K. U. & A. ZEECK: Chemistry of unusual macrolides. 1. Preparation of the aglycons of concanamycin A and elaiophylin. *J. Org. Chem.* 58: 5487~5492, 1993
- SAKUDA, S.; A. ISOGAI, S. MATSUMOTO, M. OGURA, K. FURIHATA, H. SETO & A. SUZUKI: Isolation and structure of isobutyrylleucanicidin produced by *Streptomyces halstedii*. *Agric. Biol. Chem.* 51: 2841~2842, 1987
- GORST-ALLMAN, C. P.; P. S. STEYN & C. J. RABIE: 7-*epi*-Brefeldin A, a co-metabolite of brefeldin A in *Curvularia lunata*. *J. Chem. Soc., Perkin Trans. I* 2387~2390, 1982

19) KRETSCHMER, A.; M. DORGERLOH, M. DEEG & H. HAGENMAIER: The structures of novel insecticidal macrolides: bafilomycins D and E, and oxohygrolidin. *Agric. Biol. Chem.* 49: 2509~2511, 1985

20) KINASHI, H.; K. SOMENO, K. SAKAGUCHI, T. HIGASHIJIMA & T. MIYAZAWA: Alkaline degradation products of concanamycin A. *Tetrahedron Lett.* 22: 3857~3860, 1981

21) KINASHI, H.; K. SAKAGUCHI, T. HIGASHIJIMA & T. MIYAZAWA: Structures of concanamycins B and C. *J. Antibiotics* 35: 1618~1620, 1982

22) HENSENS, O. D.; R. L. MONAGHAN, L. HUANG & G. ALBERS-SCHONBERG: Structure of the sodium and potassium ion activated adenosinetriphosphatase inhibitor L-681,110. *J. Am. Chem. Soc.* 105: 3672~3679, 1983